Fractional diffusion equation and impedance spectroscopy of electrolytic cells.

نویسندگان

  • E K Lenzi
  • L R Evangelista
  • G Barbero
چکیده

The influence of the ions on the electrochemical impedance of a cell is calculated in the framework of a complete model in which the fractional drift-diffusion problem is analytically solved. The resulting distribution of the electric field inside the sample is determined by solving Poisson's equation. The theoretical model to determine the electrical impedance we are proposing here is based on the fractional derivative of distributed order on the diffusion equation. We argue that this is the more convenient and physically significant approach to account for the enormous variety of the diffusive regimes in a real cell. The frequency dependence of the real and imaginary parts of the impedance are shown to be very similar to the ones experimentally obtained in a large variety of electrolytic samples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anomalous diffusion and memory effects on the impedance spectroscopy for finite-length situations.

The contribution of ions to the electrical impedance of an electrolytic cell limited by perfect blocking electrodes is determined by considering the role of the anomalous diffusion process and memory effects. Analytical solutions for fractional diffusion equations together with Poisson's equation relating the effective electric field to the net charge density are found. This procedure allows th...

متن کامل

Anomalous diffusion governed by a fractional diffusion equation and the electrical response of an electrolytic cell.

The electrical response of an electrolytic cell in which the diffusion of mobile ions in the bulk is governed by a fractional diffusion equation of distributed order is analyzed. The boundary conditions at the electrodes limiting the sample are described by an integro-differential equation governing the kinetic at the interface. The analysis is carried out by supposing that the positive and neg...

متن کامل

A New Implicit Finite Difference Method for Solving Time Fractional Diffusion Equation

In this paper, a time fractional diffusion equation on a finite domain is con- sidered. The time fractional diffusion equation is obtained from the standard diffusion equation by replacing the first order time derivative by a fractional derivative of order 0 < a< 1 (in the Riemann-Liovill or Caputo sence). In equation that we consider the time fractional derivative is in...

متن کامل

Finite integration method with RBFs for solving time-fractional convection-diffusion equation with variable coefficients

In this paper, a modification of finite integration method (FIM) is combined with the radial basis function (RBF) method to solve a time-fractional convection-diffusion equation with variable coefficients. The FIM transforms partial differential equations into integral equations and this creates some constants of integration. Unlike the usual FIM, the proposed method computes constants of integ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 113 33  شماره 

صفحات  -

تاریخ انتشار 2009